

DOCUMPENT RESUOME

BD 195 822 SE 033 583
AOTHOR Gales, larry : .
TITLE Desiqn Standards for Instructional Computer Programs.

Physlcal Processes in fTerrestrial and Aquatic
Ecosystens, Computer Programs and Graphics
Capabilities.

INSTITOTION Washington Oniv.. Seattie. Center for Quantitztive
Sclence in Porestry, Pisheries anrd wWildlife.

SPON3 AGENCY Netional Science Poundation, Washir-ton, D.C.

PUB DATE Sep 78 : :

GPART NEP-GZ-2980: NSP-SED74-17696

NOTE . 2lp.: Por related documents, see SE 033 581-597.

BEDFS PRICE MF01/PCUT Plus Pos:age.

DESCRIPTORS *Biology: College Science: *Computer Assisted

Instruction: Computer Graphics: *Computer Programs:
Ecology: Environmental Education; Higher Education:
Instructional Materials: *Interdisciplinary Approach:
*Physical Sciences: Science Bducation; Science
Instruction

ABSTRACT _

These materials were desiqgned to be used by life
science cstudents for instruction in ¢ho application of physical
theorvy to ecosystem operation. Most wodules contain computer proégrams
vhich are built around a particular application of a phbysical
process. The report describes design standards for the computer
programs. They are designed tc be uniferm {n stiucture and usage,
tolerant of student input, easy to use and to operate in either batch
cr interactive mode and with easy re-direction of input and output.
Rll programs (with a few excepticns) are coded in ANSI Fortran and
follow the standards set by the CONDUIT organization. Standard input
ard output mcdules are the principle agents for program
standardization. The exterral input is handlad by a module called the
format free input system which permits = user to assign values to
variables by name without regard tc position or order. The output is
handled by two modules c:lled PRNT3D ard PLOT3D. The computational
sodule is invcked by a main proqram or driver routine which
coordinates its activities with thcse of the input and output
rodules, All c¢f the proarams are guided bv +he principles of
structured programing. (Author/Cs)

14
[

kol oo s o o ok s e o ok o ke s o ol ok oo ok ok ok ol ok ok o ook o o o ok ool ok ool ool ok o o oo ol Kol sl o o ok ok o o ok ok ok K ok

% Reproduvctions supplied by EDRS are the best that can be made *

* from the original document. *
“#*t‘**#t*t#tttt*#tt###***t*tt*tt#tttt*tttt**#tt*****ttttt*tttt#*ttt**

3

Q

ERIC

Aruitoxt provided by Eic:

US ODEPARTMENT OF HEALYH,
ECUCATION L WCLFARE
NATIONAL INSTUTUTE OF

EOUCATIUN

TH1S OOCUMENT mMAY BEEN WEPROD.
OUCED EXACTLY AY RECFIVED FROM
THE PERSON OR ORGANIZATION ORIC 1IN
ATING 1T PO'NTS OF VIEW OR DPNIONS
STAYED OO NOY NECESSARILY GEPRE-
SENYOFFICIAL MATIONAL INSTITITE OF
EDUCATION PO T/ON OR POLICY

“PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED B8Y

Patricia Babh_
of the NSF

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

DESIGN STANDARDS
FOR INSTRUCTIONAL COLNPUER PROGRAMS

by

Larry Gales

’This instructional médule is part of a series on Physical
Processes in Terrestrial and Aquatic Ecosystems
supported by National Science Foundation Training
Grant No. GZ-2980

September 1978

DEC 1 2 1080
3

f

DESIGN STANDARDS
FOR INSTRUCTIONAL COMPUTER PROGRAMS

Introduction

The NSF grant G2-2980, "Physical Processes i Terrestrial and Aquatic
Ecosystems,” is concerned with the development of ins_tr.uctiohll units, called
modules, which teach‘aapects of physical processes to students in the life
sciences. Most modules contain computer programa which are built around a
particular application of a physical process. The program design standards
are aimed™at enhancing the usage, portabi}ity. eage of‘ﬁodificaﬁion, and
dissemination of these programs. In particular, the programs are designed
to be uniform in struémure and usage, tolerant of student input, easy to use,
and to operate in either batch or interactive mode and with easy re-direction
of input and output. All progfams are coded in ANSI Fortran {(with a few
carefully isolated and well documented exﬁeptionl permizted) and closely
follow the standards set by the CONDUITjorganization.

Standard input and output modules are the princiﬁnl agents for program
standardization. All external input 1slhand1ed by a module called the
format free input system (Anderson and baleg, 1978) which permits a user to
.assign values to varigblen by r.ame vit?out regard to position or order. This
system is easy to use, perpits self-documenting inmput, offers helpful
diagnostics (unlike most other input systems such as Fortran's non-standard
NAMELIST), 148 suitable for all but véry iargc data lets..ind features a
default value otruc;ure which permits a student to exercise a graduated L
‘J;gree of ;ontrol over the pEbgram which expandas ss his knowledge and skill
increase. . - .

The output is handled by two modules called PRNT3D and PLOT3D (Gales

1978a, 1978b). The former is a very flexible and portable printer plot

4

package v ¢’ - ites point, multi-line, and simulatcod three-aimensional
surface .. : {s suitable for the display of many physical processes,
while the 12 1 less po;table three~divensional hidden line Calcomp-
type display. . - ave similar interfaces t§ the calling progranm.

with the input und output modules fixed, the only variable left is
the computationa’ wodule, and fhis is iavoked b; a main program, or driver
routine, which = ~rdinates its activities with those of the input and 6utput
modules. .
Another agent of standardization is the approach offered by ltructﬁred
programmi:;.(S?) which emphasizes simplifi~d control paths, single purpose
routines developed by step wise refinement, and lingleient;y - single exit
units with ;ell defined:in:erface.. All of the programs are guided by
the principles of SP and come of them (including the three support modules)

are coded in a literal structured Fortran which adheres strictly to the

half-dozen control structures of SP (Gales, 1975 and Appendix 3).

Logical Structure of Programs

To che user, each program appears as follous:

Progran

where 1j is the jth input data set and oj {s its assoclated set of PRNT3D

or PLOT3D displays.

To a programmer, each program looks like this:

X,¥,2 coordinates for

default values for

\ input variables points to be displayed
declarations for plot titles

l _] input variables . ‘l

Format

PRNT

o1 4 | Freed input _ MAIN _ _plot _ _ | or3D o 0;
'+ —~——+—|Input values PROGRAM directives °LOT3D.—-_'_"—’

System)

COMPUTATIONAL
- MODULE

where the solid lines indicate passage of 1pformation by way of files, and

the dotted lines indicate communication via Common blocks. A4ll files are

formatted except for the file of x,y»2 coordinates which is 1in binary.

h coordinates the activities of the input, output,

The main piogram, whic

and c0mputational modules, consists of an 1n1qialization section, a read-

process-output loop, and a termination section, and is structurecd as follows:

6

Initialization

[E

O

RIC

Aruitoxt provided by Eic:

|

NODFLT = 'T'zgji

 Yes

‘1 No

Read default values for all variables
from a built-in default {ile

|

Prompt a uger
quests inputs
supplied data

with a messayge which re-
read in the next user-~
set

t

FINIS = ,T.?

Yes Prompt the user witn

No

{

a teraination ‘messzge;
terminate program

Check for errors in the
input set just read

[Abdtput

error
messiaules

appropriate Yes [

+———— were errors found?]

No

call a computational routine which generates
sets of-x, y, z coordinates for the display or
displays which represent a physical process

!

Yes rwere errors found} .
- thich escaped thiJ

input checks ?

No

Write out the x,y,z plotting coordinates on-
to a binary file; write the plot titles onto
a formatted file

call the PLOT3D or PRNTID subroutines which
Aplot-fhc data

S
The variables NODFLT and FINIS are standard input variables which are used
to suppress the input of default values, and to terminate every program,
rgspcctively. The main program always calls six specfal purpose routines:
/ NWMLIST - a small routine which~wr1tes a formatted file containing thne

named, dimensions, and types of all input variables.

/’ QQREAD - a routine in the format free input system which handles
// input.
WRIDFF - a small routine which writes out default values for all

input variables-on a formatrved file to be read by QQREAD.
WRTTLF - a small routine which writes cut a8 set of titles for
PRNT}D or PLOT3D on a formatted file.
WRTXYF - a small routine which writes x,Y¥,z coordinates onto a

binary file for use by PRNT3D or PLOT3D.

QQPR3D
or
QQPL3D

ertry points in PRNT3D or PLOT3D.

Physi;§1 Structure of Programs
The physical structure of a program, i.e., the choice of tdentifiers,
size and format of routines, file structures and formats, subroutine
linkages, etc., shouqu{fflect its logical organization.
Identifiers are 1-6 character narce assigned to values, common blocks,
programs, subroutines, functions, ;nd.files. Identifiers <hould
* be as few as possible |
* have a 2ingle meaning which remsiins invar‘ant throughout
a4 routine
e correspond to some reality o;tside the program; 1i.e.,
should represent a part, process, c¢ concept associsted

with the problem, not the program

e possesr mnemonic significance

§

The choice of indentifier names is impoftant beceuse they govern the read-
ability of code more than any other single factor. A weli.vritten progran
has very few 1Jén:1f1ers with changing or multiple meanings; their presens~ -
in large numbers is a sure sign of a poorly'structu:ed and overpatched
program vith.many unstated limitations and undet =ted bugs.

" Each routine should consist of a header and a body. The header con-
tains declarations and comments and primarily defines what is being operated
on. The body consists of executable_code and defines the operations to be’
applied to the data described in the header. The body should be fairly
small (about one page), should perform a single basic purpose, should be
entered at the top ;nd exited at‘thé bottom, and should have relatively
few, but we}l defined, cunnections to other routines.

The header provides the main internal documentation for the program,
serves as a checklist against which code can be compared, and discourages
poorly written code. One cannot easily graft a good header onto bad code,
because the many variables with their changing meanings and non-mnemonic
spellings cannot be declared and defined in the header in a compact and
understandable way. It 1s essential that the header and body evolve
together, with the header serving as a censor of bad design. Since the
header refiec:s the code, cumbersome and difficult headers arise only

from poorly written code.

The header for the main program consists of a number of sections each
>

of which 1s delimited by vertical blank apaces and a line of dashes.

The sections are as follows:

Purpose - a brief description of the purpose of the prograc including
the hain execution steps in order ef sccurrence."

Identification ~ an 1dentif1cation number, date, iocstion, language,
computer 1nstallétion. and programmer name(é).

Global variables - a group of common hlocks each structured as follows:
descriptive comments enclosed in a star box, the common
block, expl}cic Eype declarations for all of its variables,
anducomment caids which define all wvariabhles.

Local variables - explicic type declafationsm?nd detrinitions for all
local variables. v

Funﬁtlons - explicit type declarations dand definitlons for all but
standard ANSI intrinsic and external funciions.

Subroutines - names of all subroiitines called by this routine.

Externals ~ thé names:'purposes, and élgorithms for all subroutines
and functions which are unavailable or are coded in machine-
dependent language.

Files -~ the names, types (formaEted or binary), directioq (input,
output.‘input/output). and data items for all files used
in the program.

Restrictions - a list of limitations.

Error Handling - a list of error conditions and actions.

Non-ANSI Usage - a 1list of non-ANSI usages.

Machine Dependencies - a list of machine dependent featurvs,

e.g. word length dependencies.
Constants - a set of DATA stateuwents which assign values to all

constants in the routine.

10

‘Initialization - a2 set »f assignment; and loops which explicitly.
initislize all variables which require starting values.
Start - the start of the body of rhe routine.
A complefé form for the header is presented in Appendix I.
Subroﬁ;ines and functions contain linkages, hecaders, and bodies.
‘Subroutine linkages are structured as follows. The arguments are separated

into three class~:s: 1input, input/output, and output arguments. The imput

arguments are listed first; the input/cutpur argumenté are listed next and
are separated from the input arguments by several spaces, and the output.
arguments are listed last, and are separated from the input or'input/ouCput

list by several spaces. For example,

SUBROUTINE SUEBL (X,Y, EX, A,BOT).
e anaad Nt e, —
‘ ' input input/ nutput
output -
SUBROUTINE SUB2 (P,QQ,T)
input/
output
SUBROUTINE SUB3 (X,TOT, Z.2ZR)
inmet ovutput

Such 2 convention clearly reveals the nature of the linkages. The con-
vention aiso applies t; those statements which «.all the subroutines, for
qxaméle. CALL SUB3] (X.Tof. | B,ZR). ‘All the acyuments for
functions should be input arguments only.

The headers for subroucines and functions d;ffer slightly from the

main program header, in that the§:

11

b

»_have ¢n ”Argument: section

¢ lack an "Identiticntion“ section (unless it differs from
the main program) .

. e lack discriptive comments ano definitinns for common block
variables; and unused varfables i the common block are
declared with a 22Zzh (*) conveation

N

® lack a "Files" section

End-of~-file Handling

The end-of-file m;rke§. whose Euli treaﬁment is undefined in ANSI 1

. Fortran, 16 needed to delimit input data sets rezd by the fczuat.féeg
input system, and to'terminate files of x;y,z coordinates; In the “Yormer
case, the ena-of-file is represented by a dollar sign ($). and in the

latter case by the x,y,z triple (-99999., -99999., -99999.)

Error Mandling ‘ | o {
In most cases, errors which arise or are detec%ed uithiﬁ_h s;broutine
are handled as follaws: ' v ‘
1) the error condition triggers a message of the form: - A
AM®RAEREOR NO. n DETECTED IN name '
' <error message>

Bl

5 <the names and valuead of variables uhic\
clesely ‘relata to the error>

vhere n is the error number and name {9 the name cf the éub-
routine. The error menla;e;ip Qritten_out on‘a ?pecinl cfror
message file, although the latter nay‘be equated to the
standard output file.

2) the error number is passed back to the calling routine vis

common Or &n argument list.

12

10

3) the subroutine is aborted and control returns (through varioui
lubroutinéllevell i1f necessary) to the main program.
4) the naiq program geros out all error ihdicatﬁts and skips to
the next input data’set.
The above procedure permits the processing and error scanning of multiple
sets of input when the program is run in batch-mbde. and insures easy
recovery from errofa by the user when the.érogram 18 run interactively.
"All external iﬂbut is handled by the format free input system which
automatically checks for name, value, and subscript violations. Each
program a%so contains a special subroutine, named INCﬁK. which tests
éacﬁ input variablc v against a range, vMIN to vMAX, or aet'of permissable
vaiues. Values ougsida this range trigger error messages. The VMIN and

VMAX values are set by data statements within INCHK.

Cutput
All output is designed to fit on standard 8% by 11 iach pages for

easy storage and dissemenation. Tﬁe output consists of prompter messages,
echoed input, error messages, and the plotted output from PB§?3D or PLOT3D
along with their associated titles and other annotation.

Externsl Documentation

. Each inatructional module is presented as a package which is described

" by the following packing list: .

IMPOZTANT

Packing List for: program <name>
;/.

Encldseé wich this 1ist are the following elements conprising the package:

1 each —=- Magnetic tape containing a) the source program plus support
routines, and b) sample runs with annotated control cards .
and input cards.l

1 each -- CONDUIT Tape Distribution Form describing how the tape was
recorded and what it contains. This form cont&inu essential
information and should be carefully read.

1 sach -~ Listing of the tape as read by us before we sent it.‘

1 each -- Listing of the source program plui support routines as compiled
under the Minnesota Fortran ANSI verifier compiler.

1l each -=- Module description plus problem sets, program abatruct, and
user's guide.

1l eAch -— Design Standards for Pvograms.

1 each -—- Program abstract, user's guides, and programmer's guides for
"all support routines.

1 each -~ Notes for implementers.

12

The user's gu;de consists of the follawing sections:
1) 1ldentification - contains name, author, date, and location
2) Purpose ‘
3) Oﬁerntion
4) Program organization - an aggregate flow char; of the program
S) 1Input - a table of all input variables with their names, types,
dimensions, range limits, purpose, and default valucs
6) Output = a verbal discussion of the output produced by the
program
7) Restrictions
8) Error messages
9) Sample runs - a complete input set 1nc1ud1ng_lnnotated ﬁgntrol
cards and ,h annotated set of input data letl,.folloveisiy the
exact outputs which result. The sample ruﬂAlhould permit users
at a different installation to test the program.
10) References
The progr wmmer's guide for each of the Physical Processes computer
modules consists;of a‘note to'implementers. internal comments in the computer
program, and this document‘on design standards. The three support foutines
FFORM, PRNT3D, and PLOT3D, however, which handle input/output for each
modﬁle. have detailéé‘programmer's guidés as aeﬁarate docﬁnents.

Testing Procedures

- Testing procedures should insure that all subscripts remain within ;rray
bounds, all control paths are fully exercised, all boundary conditions are

tested, and all procedures are numeficélly scable.

13-

APPENDIX I: FORMAT OF PROGRAM HEADERS
N A

[
The header ghould be formatted as follows:
card columns

1 6 7 . 21 29 37 45 53 . 61
c
c
C~PURPOSE--
c B :
c comments describing the purpose and main execution stepa
¢ .
c
c
C~-IDENTIFICATION~=~
c
Cc 1.D. number, date, location, language, computer installation,
c programmer name(s)
c
c
C~GLOBAL VARIABLES-
c
c AARARRRARRARARARRARR AR AARARARRKAARRAARRRARRRAARRRRAAAL
Cc * purpose and description of following common block %
c * . . *
C AARARRRRRAARRARARRARARAAAARAARAARRRRAAAAAAARRAARAARRK A
c .
. COMMON/name/ v, v, v, Vv, v, v,
. v, v, v, « o o
* INTEGER v, v, Ve ote s
* REAL V, Vv, Vy o o o
LOGICAL v, Vv, Vy o o o
c
Cc DEFINITIONS -
(o] . .
Cc = verbal description of variable
Cc =
c
c
C-LOCAL VARIABLES - v
c INTEGER v, v, Vo o o o
REAL Vv, Vv, Vy o o o
LOGICAL v, v, Vs o o o
c

APPENDIX I continued

14~

21 29 - 37 . 45 33 61

verbal description of varisble

fcn, fcn, fcn, o o o
fcn, fcn, fcn, o o o
fcn, -fea, fcn, o« o o

verbal description of purpose of function

OONOOO

sub, _sub, sub, o« o o

purpose, algorithm, and interface to rest
of program for each subroutine or function
which 18 highly machine dependent or is not
included in the source deck

1 6 7

c DEFINITIONS

c

C ve

C Ve

c

c

C-FUNCTIONS--

c .
INTEGER
REAL
LOGICAL

c .

c DEFINITIONS

c

C fcne-

C fcn=

~SUBROUTINES~~-

c

.'c‘

C-EXTERNALS

c

c sub

c

(o4

c-

¢

C-FILES--~ -

c

c £

c

c

the type'(formattéd or binary), direction
(in, out, or inf/out), and data items
for file £

APPENDIX I continued

1 67 21 29 37 4S 33 61

C
c .
C-RESTRICTIONS=~==—

c :
C A discussion of program limitations

c
c .
C-ERROR HANDLING- —

c
.C A 1ist of error conditions and actions

c
c

-C-NON-ANSI USAGES - -
C
c List of non-ANSI features

C
C

.

C~MACHINE DEPENDENCIES~=-==-=
c ~
C Discussion of the effects of guch things ag word lengths,
c numerical precision, and memory requirements

C
C

C-CONSTANTS
C - .

. . DATA VeV eeey v/ Y |
e)

c

C-INITIALIZATION===wm=-
c .
All variables which require starting vslueg are
initialized here. Also files may be rewound

C ‘
c .

C~-START - -
c _ ‘
The body of the program starts here 1 8

-16-

APPENDIX I continued

Subroutines and functions differ from the ﬁéin program in that they
. have an arguments section and generally lack identification and files
sections, often do not comment the common blocks, and npecify unused common
variables with the 2ZZZn(k) convention. The first part of a subroutine

header is as follows:

1 67 21 29 37 45 53 61
SUBROUTINE name(a,a, a,a, a,8)

c

c

C~PURPOSE-

c

c

C-ARGUENTS

c
INTEGER a, a, a, e 5 e
REAL a, a, a, o o o

LOGICAL a, a, a,

. | -17-

1

APPENDIX II: ANSI FUNCTIONS

Allowable Intrinsic Functions:

ABS IABS DABS

AT INT IDINT

AMOD HOD

AMAXO AMAXI MAXO MAXI DMAXI
_ AMINO AMINI , MINO MINI DMINI
FLOAT IFIX

SIGN ISIGN DSIGN

DIM _ IDIM

SNGL REAL

AIMAG DBLE CMPLX CONIG

External functions:

EXP _ DEXP CEXP

ALOG DLOG CLOG

ALOG10 DLOGL0

SIN - DSIN CSIN

cos ' DCOS CCOS

TANH _ SQRT DSQRT CSQRT
ATAN DATAN ATANH DATANH

DMOD ~ CABS

20

-la-

APPENDIX III: STRUCTURED FORTRAN

Structured Fortran uses the familiar control structures of SP:

1.
2.
3.
4,
5.
6.
7.

IF b THEN s END-IF

IF b THEN 8; ELSE s END-ELSE

IF by THEN &) ELSEIF b, THEN #; ... OTHERWISE s_ END-ELSEIF
WHILE b DO s END-WHILE

REPEAT s UNTIL b END-REPEAT

LOOP s WHILE b DO s END-LOOP

DO s CONTINUE (a restricted repeat statement)

where b, 91, ... denote Boolean expressions and s, 8], ... denote any

set of statements including other control structures. The above

structures are translated into left and right hand eides in Fortran as

described below. The translation introduces one non-ANSI fepture which

can easily be removed by a very small preprocessor. For a discussion

of the use of this technique gsee Gales, 1975. The control structures are

as follows: .)

21

-

II. Structure

«]9=

1 67 21 25 .
IF
. (.NOT. (b
.))GOTOL01; THEN
8
101 CONTINUE; END-1IF
IF
. (.NOT. (b
.))GOT0201; THEN
sl
GOT0202; ELSZ
201 82
202 CONTINUE; END-ELSE
1P
. (.NOT. (bl
.))G020301; THEN
sl
coTp307; ELSEIF
3C1 TF (.NOT.(b2
.))GOT0302 THEN
82
GOTO307; FLSZIF
30, 1F (.NOT.(b6
.))COTO0306; THEN
86
GOT0307; OTHLRWISE
306 s?
307 CONTINUE; ZND-ELSLIF
c : WHILE
401 IF (.NOT.(b
-))GOT0402; DO
. s
GOT0401; END-WHILE

402 CONTINUE

701

DO 701 I=l,N
[
CONTINUE

Il. Structure(continued)
1 7 21 25
. C REPEAT
501 s .
(o] UNTIL
IF (.NOT.(b
+))GOTO501; END-REPEAT
(o . LOOP
601 sl
Cc WHILE
IF (.NOT.(. b
.))GOT0602; DO
a2
GOTO601 ; END-LOOP
602 CONTINUE

~-il~

References

Anderson, L. and L.E. Cales. 1978. Programmer's guide for subroutinme
FFORM: s fdrmat free input system. Center for Quantitative Sciencq
in Forestry, Fisheries, and Wildlife, University of Washington,
Seattle, Washington.

Gales, L.E. 1975. Structured Fortran with No Preprocessor. SIGPLAN
Notices, Octoter.

Gales.AL. 1978. Programmer's guide for subroutine PRNT3D. Center for
Quantitative Science in Fdrestry, Fisherles, and Wildlife, University
of Washington, Seattle, Washington.

Cales, L. 1978. Programmer's guide for subroutine PLOT3D. Center for
Quantitative Science in Forestry, Fisheries, and Wildlife, University

of Washington, Seattle, Washington.

