
www.manaraa.com

www.manaraa.com

DOCUPENT REM!

ED 195 422 SE 033 583

AUTHOR Gales, Larry
TITLE Design Standards for Instructional Computer Programs.

Physical Processes in lerrestrial and Aquatic
Ecosystems, Computer Programs and Graphics
Capabilities.

INSTITUTION Washington Univ., Seattle. Center for Quantitative
Science in Forestry, Fisheries and Wildlife.

SPONS AGENCY National Science Foundation, Washin..ton, D.C.
PUB DATE Sep 78
GPANT NSF-GZ-2990: NSF-SED74-17696
NOTE , 24p.: For related documents, see SE 033 581-597.

EDFS PRICE
DESCRIPTORS

MF01/PC01 Plus Postage.
*Biology: College Science: *Computer Assisted
Instruction: Computer Graphics: *Computer Programs:
Ecology: Environmental Education: Higher Education:
Instructional Materials: *Interdisciplinary Approach:
*Physical Sciences: Science Education:, Science
Instruction

ABSTRACT
These materials were designed to be used by life

science students for instruction in t) application of physical
theory to ecosystem operation. Most nodules contain computer programs
which are built around a particular application of a physical
process. The report describes design standards for the computer
programs. They are designed to be uniform in structure and usage,
tolerant of student input, easy to use and to operate in either batch
cr interactive mode and with easy re-direction of input and output.
All programs (with a few exceptions' are coded in ANSI Fortran and
follow the standards setby the CONDUIT organization. Standard input
ar.d output modules are the principle agents for program
standardization. The external input is handled by a module called the
format free input system which permits a user to assign values to
variables by name without reaard to position or order. The output is
fmndled by two modules called PRNT3D and PLOT3D. The computational
nodule is invoked by a main program or driver routine which
coordinates its activities with those of the input and output
nodules. All of the programs are guided by the principles of
structured programing. (Author/CS1

Reproductions supplied by BIM are the best that can be made

from the original document.

www.manaraa.com

U
S

M
IN

T
 O

f H
E

A
LT

H
.

E
C

U
E

A
T

1O
N

A
N

A
T

IO
N

A
L IN

S
T

IT
U

T
E

 O
F

IT
O

U
E

T
..N

"P
E

R
M

IS
S

IO
N

 T
O

 R
E

P
R

O
D

U
C

E
 T

H
IS

M
A

T
E

R
IA

L H
A

S
 B

E
E

N
 G

R
A

N
T

E
D

 B
Y

!"IS
 D

O
C

U
M

E
N

T
 S

 B
E

E
N

 A
E

0.
O

U
C

E
0 E

T
C

v S
 R

E
E

F
 IvE

0 T
R

O
M

T
N

T
 E

 A
W

N
 00G

A
N

./A
T

.O
N

 0.C
.N

T
oN

C
, IT

 P
O

IN
T

S
 O

F
 vE

 Jo O
n 0ohiS

S
I° 00 N

O
T

 N
E

C
E

S
S

R
tiv E

T
/E

-
S

E
N

T
 O

F T
E

oL hT
O

N
C

N
S

T
IT

.)T
E

 pi
E

C
IU

C
T

IO
N

 O
S

O
,O

N
 O

R
 O

L.E
T

T
O

 T
H

E
 E

D
U

C
A

T
IO

N
A

L R
E

S
O

U
R

C
E

S
IN

F
O

R
M

A
T

IO
N

 C
E

N
T

E
R

 (E
R

IC
)."

www.manaraa.com

DESIGN STANDARDS

FOR INSTRUCTIONAL C01%PCER PROGRAMS,

by

Larry Gales

This instructional module is part of a series on Physical

Processes in Terrestrial and Aquatic Ecosystems

supported by National Science Foundation Training

Grant No. GZ 2980

September 1978

DEC 121980
3

www.manaraa.com

DESIGN 1177.11DARDS
FOR INSTRUCTIONAL COMPUTER PROGRAMS

Introduction

The NSF grant GZ-2980, "Physical Processes in Terrestrial and Aquatic

Ecosystems," is concerned with the development of instructional units, called

modules, which teach aspects of phYsical processes to students in the life

sciences. Most modules contain computer programa which are built around a

particular application of a physical prOcesa. The program design standards

are aimed at enhancing the usage, portability, ease of modification, and

dissemination of these programs. In particular, the programs are designed

to be uniform in structure and usage, tolerant of student input, easy to use,

and to operate in either batch or interactive mode and with easy re-direction

of input and output. All programs are coded in ANSI Fortran (with a few

carefully isolated and well documented exceptions permitted) and closely

follow the standards set by the CONDUITorganizstion.

Standard input and output modules are the principal agents for program

standardization. All external input is handled by a module called the

format free input system (Anderson and Gales, 1978) which permits a user to

assign values to variables by name wilout regard to position or order. This

system is easy to use, permits self-documenting input, offers helpful

diagnostics (unlike most other input systems such as Fortran's non-standard

NAMELIST), is suitable for all but very large data sets, and features a

default value structure which permits a student to exercise a graduated
r

'degree of control over the program which expands as his knowledge and skill

increase.

The output is handled by two modules called PRNT3D and PLOT3D (Gales

1978a, 1978b). The former is a very flexible and portable printer plot

www.manaraa.com

package C area point, multi-line, and simulatA three-dimensional

surface is suitable for the display of many physical processes,

while the ia less portable three-dimensional hidden line Calcomp-

type display. ave similar interfaces to the calling program.

With the input ;and output modules fixed, the only variable left is

the computationa wodule, and this is invoked by a main program, or driver

routine, which ..,-rdinates its activities with those of the input and output

modulei.

Another agent of standardization is the approach offered by structured

programming (SP) which emphasizes simplifi.td control paths, single purpose

routines developed by step wise refinement, and single.entry - single exit

units with well defined interfaces. All of the programs are guided by

the principles of SP and coma of them (including the three support modules)

are coded in a literal structured Fortran which adheres strictly to the

half-dozen control structures of SP (Gales, 1975 and Appendix 3).

5

www.manaraa.com

3

Logical Structure of Programs

To che user, each program appears as follows:

i it i7 11
Program

0
1

0 2
On

where i is the jth input data set and o is its associated set of PRNT3D

or PLOT3D displays.

j

To a programmer, each program looks like this:

i it

default values for
input variables

declarations for

1

1 input variables1

Format
Free,
Input
System

input

values

-,c,yez coordinates for

points to be displayed

MAIN
PROGRAM

COMPUTATIONAL
MODULE

plot titles

_plot

airectives

PRNT3D
or

PLOT3D

°I 02

where the solid lines indicate passage of information by way of files, and

the dotted lines indicate communication via common blocks. All files are

formatted except for the file of x,y,z
coordinates which is in binary.

The main program, which coordinates the
activities of the input, output,

and computational
modules, consists of an initialization section, a read-

process-output loop, and a termination section, and is structured as follows:

6

www.manaraa.com

Initialization

NODFLT .7.1

I No

Yes

Read default values for all variables
from a built-in default file

1

odtpot
appropriate
error
messaltes

Prompt a user with a message which re-
quests input; read in the next user-
supplied data set

Yes Prompt the user with
a terminatiorrmessage;
terminate program

4

Check for errors in the
input sgt just read

Yes (were errors found?

No

call a computational routine which generates
sets ofx, y, z coordinates for the display or
displays which represent a physical process

Yes
were errors found
which escaped the
in ut checks ?

No

Write out the x,y,z plotting coordinates on-
to a binary file; write the plot titles onto
a formatted file

call the PLOT3D or PRNTJD subroutines which
plot,t'he data

7

www.manaraa.com

5

The variables NODFLT and FINIS are standard input variables which are used

to suppress the input of default values, and to terminate every program,

respectively. The main program always calls six special purpose routines:

KMLIST - a small routine which writes a formatted file containing the

named, dimensions, and types of all input variables.

QQREAD - a routine in the format free input system which handles

input.

WRTDFF - a small routine which writes out default values for all

input variables'on a formatted file to be read by QQREAD.

WRTTLF - a small routine which writes out a set of titles for

PRNT3D or PLOT3D on a formatted file.

WRTXYF - a small routine which writes x,y,z coordinates onto a

binary file for use by PRNT3D or PLOT3D.

QQPR3D - errry points in PRNT3D or PLOT3D.
or

QQPL3D

Physical Structure of Programs

The physical structure of a program, i.e., the choice of identifiers,

size and format of routines, file structures and formats, subroutine

linkages, etc., shouldrieflect its logical organization.

Identifiers are 1-6 character narcs assigned to values, common blocks,

programs, subroutines, functions, and files. Identifiern should

be as few as possible

have a single meaning which remainn invarlant throughout
a routine

correspond to some reality outside the program; i.e.,
should represent a part, process, or concept associated
with the problem, not the program

poses mnemonic significance

www.manaraa.com

6

The choice of indentffier names is important because they govern the read-

ability of code more than any other single factor. A well written program,

has very few identifiers with changing or multiple meanings; their presens:

in large numbers is a sure sign of a poorly structured and overpatched

program with many unstated limitations and under :ted bugs.

Each routine should consist of a header and a body. The header con-

tains declarations and comments and primarily defines what is being operated

on. The body consists of executable code and defines the operations to be

applied to the data described in the header. The body should be fairly

small (about one page), should perform a single basic purpose, should be

entered at the top and exited at the bottom, and should have relatively

few, but well defined, connections to other routines.

The header provides the main internal documentation for the.program,

serves as a checklist against which code can be compared, and discourages

poorly written code. One cannot easily graft a good header onto bad code,

because the many variables with their changing meanings and non-mnemonic

spellings cannot be declared and defined in the header in a compact and

understandable way. It is essential that the header and body evolve

together, with the header serving as a censor of bad design. Since the

header reflects the code, cumbersome and difficult headers arise only

from poorly written code.

The header for the main program consists of a number of sections each

of which is delimited by vertical blank spaces and a line of dashes.

The sections are as follows:

9

www.manaraa.com

7

Purpose - a brief description of the purpose of the program including

the main execution steps in order of :-.,ccurrence.-

Identification - an identification number, date, location, language,

computer installation, and programmer name(s).

Global variables - a group of common blocks each structired as follows:

descriptive comments enclOsed in a star box, the common

block, explicit type declarations for all of its variables,

and comment cards which define all variables.

Local variables - explicit type declarations and definitions for all

local variables.

Functions - explicit type declarations dnd definitions for all but

standard ANSI intrinsic and external funk.zions.

Subroutines - names of all subroutines called by this routine.

Externals - tLe names: purposes, and algorithms for all subroutines

and functions which are unavailable or are coded in machine-

dependent language.

Files - the names, types (formatted or binary), direction (input,

output, input/output), and data items for all files ured

in the program.

Restrictions - a list of limitations.

Error Handling - a list of error conditions and actions.

Non-ANSI Uiage - a list of non-ANSI usages.

Machine Dependencies - a list of machihe dependent features,

e.g. word length dependencies.

Constants - a set of DATA statements which assign values to all

constants in the routine.

10

www.manaraa.com

8

Initialization - a set of assignments and loops which explicitly

initialize all variables which require starting values.

Start - the start of the body of the routine.

A complete form for the header.is presented in Appendix I.

Subroutines and functions contain linkages, headers, and bodies.

Subroutine linkages are structured as follows. The arguments are separated

into three class':s: input, input/output, and outrut arguments. The input

arguments are listed first, the input/output arguments are listed next and

are separated from the input arguments by several spaces, and the output

arguments are listed last, and are separated from the input or input/output

list by several spaces. For example,

,SUBROUTINE SUE]. (X,Y, F X A,BOT).
..-........,

input input/ output
output

SUBROUTINE SUB2 (

SUBROUTINE SUB3 (X,TOT,

in wt

P,QQ,T

input/
output

E ZR)

output

Such ,a convention clearly reveals the nature of the linkages. The con-

vention also applies to those statements which 'all the subroutines, for

example, CALL SUB3 (X,TOT, B,ZR). All the arguments for

functions should be input arguments only.

The headers for subroutines and functions differ slightly from the

main program header, in that th0.:

11.

www.manaraa.com

9

shave en "Argumentsr section

lack an l'Identification",nectiOn (Unless it differs from
the main. program)

lack discriptive comments and definitions for common block
variables; and unused variables in the common block are
declared with a ZUZ4 (*) convention,

lack a "Files" section

End-of-file Handling

The end-of-file marker, whose full treatment is undefined in ANSI

Fortran, is needed to delimit input data sets read by the format free

input system, and to terminate files of x,y,z coordinates. In the dormer

case, the end-of-file is represented by a dollar sign ($),and in the

latter case by the x,y,z triple (-99999., -99999., -99999.)

Error Handling

In most cases, errors which arise or are detected within a subroutine

are handled as follows:

1) the error condition triggers a message of the form:

******ERROR NO. n DETECTED IN name

<error message>

<the names and values of variables which
closely relate to the error>

where n is the error number and name is the name the sub-

routine. The error message is written out ona special error

message'file, although the latter may be equated to the

Standard output file.

2) the error number is passed back to the calling routine via

common or an argument list.

12

www.manaraa.com

10

3) the subroutine is aborted and control returns (through various

subroutine levels if necessary) to the main program.

4) thy: main program zeros out all error indicators and skips to

the next input deta'set.

The above procedure permits the processing and error scanning of multiple

sets of input when the program is run in batch mode, and insures easy

recovery from errors by the user when the program is run interactively.

Input.

All external input is handled by the format free input system which

automatically checks for name, value, and subscript violations. Each

program also contains a special subroutine, named INCHX, which tests

each input variable v against a range, vMIN to vMAX, or set of permissable

values. Values outside this range trigger error messages. The vMIN and

vMAX values are set by data statements within WORK.

Output

All output is designed to fit on standard 84 by'll inch pages for

easy storage and dissemenation. The output consists of prompter messaget,

echoed input, error messages, and the plotted output from PRNT3D or PLOT3D

along with their associated titles and other annotation.

External Documentation

Each instructional module is presented as a package which is described

by the following packing list:

13

www.manaraa.com

11

IMPORTANT

Packing List for: program <name>

Enclosed with this list are the following elements comprising the package:

1 each -- Magnetic tape containing a) the source program plus support

routines, and b) sample runs with annotated control cards

and input cards.

1 each -- CONDUIT Tape Distribution Form describing how the tape was

recorded and what it contains. This form contains essential

information and should be carefully read.

1 each -- Listing of the tape as read by us before we sent it.

1 each -- Listing of the source program plus support routines as compiled

under the Minnesota Fortran ANSI verifier compiler.

1 each -- Module description plus problem sets, program abstreict, and

user's guide.

1 each -- Design Standards for Fvograms.

1 each -- Program abstract, user's guide*, and programmer's guides for

all support routines.

1 each -- Notes for implementers.

14

www.manaraa.com

12

The user's guide consists of the follc.:Atms sections:

1) Identification contains name, author, date, and location

2) Purpose

3) Operation

4) Program organization an aggregate flow chart of the program

5) Input a table of all input variables with their names, types,

dimensions, range limits, purpose, and default values

6) Output a verbal discussion of the output produced by the

program

7) Restrictions

8) Error messages

9) Sample runs a complete input set including annotated cgntrol

it

cards and an annotated set of input data sets, follower by the

exact outputs which result. The sample run should permit users

at a different installation to test the program.

10) References

The programmer's guide for each of the PhySical Processes computer

modules consists of a'note to implementers, internal comments in the computer

program, and this document on design standards. The three support routines

FFORM, PRNT3D, and PLOT3D, however, which handle input/output for each

module, have detailed programmer's guides as separate documents.

Testing Procedures

Testing procedures should insure that all subscripts remain within array

bounds, all control paths are fully exercised, all boundary conditions are

tested, and all procedures are numerically

15

www.manaraa.com

-13-

APPENDIX I: FORMAT OF PROGRAM HEADERS

The header should be formatted as follows:

card columns
1 6 7 21 29 37 45 53 61

C
C
C-PURPOSE
C

C comments describing the purpose and main execution steps
C

C

C

C-IDENTIFICATION
C

C I.D. number, date, location, language, computer installation,
C prograMmer name(a)

C
C
C-'LORAL VARIABLES
C
C **

C * purpose and description of following common block *

C **
r

COMMON/name/ v, v, v,

v, v, v,

INTEGER v, v, v, o.0
'REAL v, v, v,

LOGICAL v, v, v,

C

C DEFINITIONS
C
C vim

C vim

v,

verbal description of variable

C
C
C -LOCAL VARIABLES
C INTEGER v, v,

REAL v, v,

LOGICAL v, v,

C

Vp
Vp

Vp

16

ow...mom

v, v,

www.manaraa.com

APPENDIX I continued

1 67

C DEFINITIONS
C

-14-

21 29 37 45 53 61

verbal description of variable

C
C
C -FUNCTIONS

C
INTEGER
REAL
LOGICAL

fcn, fcn, fcn,

fcn, fcn, fcn,

fcn, -fcn, fcn,

C
C DEFINITIONS
C
C
C

fend,

fcn"

verbal description of purpose of function

C
4,

C-SUBROUTINES
C sub, sub, sub,

C
C
C-EXTERNALS
C
C sub purpose, algorithm, and interface to rest

C of program for each subroutine or function

C which is highly machine dependent or is not

C included in the source deck

C-FILES
C
C f the type (formatted or binary), direction

C (in, out, or in/out), and data items

C for file f

"

www.manaraa.com

APPENDIX I continued

1 67

C
C
C-RESTRICTIONS-

-15-

21 29 37 45 53 61

C
C A discussion of program limitations

C
C

C-ERROR HANDLING-
C
C A list of error conditions and actions

C
C

-NON-ANSI USAGES
C
C List of non-ANSI features

C
C
C- MACHINE DEPENDENCIES
C
C Discussion of the effects of such things as word lengths,
C numerical precision, and memory requirements

C
C
C-CONSTANTS-
C

DATA v, v /
C
C
C-INITIALIZATION
C

All variables which require starting values are
initialized here. Also files may be rewound

C
C
G-START
C

The body of the program starts here
18

www.manaraa.com

-16-

APPENDIX I continued

Subroutines and functions differ from the main program in that they

have an arguments section and generally lack identification and files

sections, often do not comment the common blocks, and specify unused common

variables with the ZZZZn(*) convention. The first part of a subroutine

header is as follows:

1 6.7 21 29 37 45 53 61

SUBROUTINE name(a01, a,a, a,a)

C
C
C-PURPOSE

C
C
C-ARGUILENTS
C

INTEGER a, a, a, I,

REAL a, a, a,

LOGICAL a, a, a,

www.manaraa.com

-17

APPENDIX II: ANSI FUNCTIONS

Allowable Intrinsic Functions:

ABS IABS DABS

AIET INT IDINT

AMOD HOD

AMAXO AMAXI HAXO MAX! MAXI

AMINO AMINI , HINO MINI DHINI

FLOAT IFIX

SIGN ISICN

DIM IDIM

SNGL REAL

AIHAG DBLE CMPLX OONTG

External functions:

EXP DEXP CEXP

ALOG DLOG CLOG

ALOG10 DLOG10

SIN DSIN CSIN

COS DCOS CCOS

TANH SQRT DSQRT CSQRT

ATAN DATAN ATANH DATANH

DMOD CABS

20

www.manaraa.com

APPENDIX III: STRUCTURED FORTRAN

Structured Fortran uses the familiar control structures of SP:

1. IF b THEN s END-IF

2. IF b THEN si ELSE s2 END-ELSE

3. IF bl THEN al ELSEIF b2 THEN 42 ... OTHERWISE sn END-ELSEIF

4. WHILE b DO s.END-WHILE

5. REPEAT s UNTIL b END-REPEAT

6. 100P s WHILE b DO a END-LOOP

7. DC s CONTINUE (a restricted repeat statement)

where b, bi, ... denote Boolean expressions and s, si, ... denote any

set of statements including other control structures. The above

structures are translated into left and right hand sides in Fortran as

described below. The translation introduces one non-ANSI feature which

can easily be removed by a very small preprocessor. For a discussion

of the use of this technique see Gales, 1975. The control structures are

as follows:

21

www.manaraa.com

-19-

II. Structure

1 67 21 25

IF

. (.NOT.(

.))GOT0101; THEN

101 CONTINUE; END-IF

IF
. (.NOT.(

.))GOT0201; THEN
sl

GOT0202; ELSZ
201 s2
202 CONTINUE; END-ELSE

IF
.(.NOT.(bl
.))GOT0301; THEN

el
CnT0307; ELSEIF

3C1 (.NOT.(b2
.)) GOT0302 ThEN

82

GOT0307; FLSEIF
30:, IF (.NOT.(b6

.))C0T0306; THEN
s6

GOT0307; OTHERWISE

306 s7
307 CONTINUE; END-ELSEIF

C WHILE
401 IF (.NOT.(

.))GOT0402; DO

GOT0401; END-WHILE
402 CONTINUE

DO 701 I1,N
s

701 CONTINUE

22

www.manaraa.com

II. Structure(continued)

1 7 21 25

C REPEAT
501

C UNTIL
IF (.NOT.(
.))GOT0501; END-REPEAT

C LOOP
601 s1

C WHILE
IF (.NOT.(, b
.))00T0602; DO

s2

GOT0601; END-LOOP
602 CONTINUE

23

www.manaraa.com

References

Anderson, L. and L.E. Gales. 1978. Programmer's guide for subroutine

FFORM: a format free input system. Center for Quantitative Science

in Forestry, Fisheries, and Wildlife, University of Washington,

Seattle, Washington.

Gales, L.E. 1975. Structured Fortran with No Preprocessor. SIGPLAN

Notices, October.

Gales, L. 1978. Programmer's guide for subroutine PRNT3D. Center for

Quantitative Science in Forestry, Fisheries, and Wildlife, University

of Washington, Seattle, Washington.

Gales, L. 1978. Programmer's guide for subroutine PLOT3D. Center for

Quantitative Science in Forestry, Fisheries, and Wildlife, University

of Washington, Seattle, Washington.

